Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.24.21255827

ABSTRACT

Restricting in-person interactions is an important technique for limiting the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although early research found strong associations between cell phone mobility and infection spread during the initial outbreaks in the United States, it is unclear whether this relationship persists across locations and time. We propose an interpretable statistical model to identify spatiotemporal variation in the association between mobility and infection rates. Using one year of US county-level data, we found that sharp drops in mobility often coincided with declining infection rates in the most populous counties in spring 2020. However, the association varied considerably in other locations and across time. Our findings are sensitive to model flexibility, as more restrictive models average over local effects and mask much of the spatiotemporal variation. We conclude that mobility does not appear to be a reliable leading indicator of infection rates, which may have important policy implications.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.16.20212753

ABSTRACT

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias or do not account for delays. We develop an estimator with a regularization scheme to cope with these sources of noise, which we term the Robust Incidence Deconvolution Estimator (RIDE). We validate RIDE on synthetic data, comparing accuracy and stability to existing approaches. We then use RIDE to study COVID-19 records in the United States, and find evidence that infection estimates from reported cases can be more informative than estimates from mortality data. To implement these methods, we release incidental, a ready-to-use R implementation of our estimator that can aid ongoing efforts to monitor the COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL